본문 바로가기
라즈베리파이_피코_피코 W/마이크로파이썬

11. 라즈베리파이 피코 블루투스/SDCARD

by 땜블리 2023. 3. 5.
728x90
반응형
SMALL

안녕하세요 땜블리 입니다.

라즈베리파이 피코 베이직 트레이닝 보드를 이용한 블루투스 / SD CARD제어를 진행 하겠습니다.

베이직 트레이닝 보드는 아래에서 확인이 가능합니다.

https://ttcw.tistory.com/4

 

라즈베리파이 피코 베이직 트레이닝보드 구성

라즈베리파이 피코 보드의 펌웨어실습을 위한 베이직 트레이닝보드를 소개 합니다. 현재 네이버 스마트스토어에서 판매가 진행되고 있습니다. 라즈베리파이 피코 베이직 트레이닝 보드 라즈베

ttcw.tistory.com

 

- 온습도 데이터를 블루투스를 통하여 전송하고 SD CARD에 데이터 저장 하기

 

 

main.py

from machine import UART, Pin, I2C, ADC, PWM,SPI
from time import sleep
import dht
import sdcard
import uos

led1 = Pin(2,Pin.OUT)
led2 = Pin(3,Pin.OUT)

CdS_adc = ADC(Pin(27))

vr_adc = ADC(Pin(26)) 

dhtIn = Pin(7,Pin.IN) # 온/습도 센서 설정
dhtOut = dht.DHT11(dhtIn)# 온/습도 센서 설정

uart0 = UART(0, baudrate=115200, bits=8, parity=None, stop=1, tx=Pin(16), rx=Pin(17))# UART 설정
uart0.write("pico sensorBoard Test\n")

CS = Pin(9, Pin.OUT)
spi = machine.SPI(1,baudrate=1000000,polarity=0,phase=0,bits=8,firstbit=SPI.MSB,sck=Pin(10),mosi=Pin(11),miso=Pin(8))
sd = sdcard.SDCard(spi,CS)
vfs = uos.VfsFat(sd)
uos.mount(vfs, '/sd')
print(uos.listdir('/sd'))
    
temp=0
humi=0
def tempHumiSensor():
    global temp, humi
    dhtOut.measure()
    temp = dhtOut.temperature()
    humi = dhtOut.humidity()
    sleep(0.5)
    
VRData=0
def adcInput(ch):
    global VRData
    if ch == 0: #VR
        VRData = vr_adc.read_u16()
        VRDataV = (3.3/65535) * VRData
        VRDataV = round(VRDataV,1)
        return VRDataV
    elif ch == 1: #CdS
        CdSData = CdS_adc.read_u16()
        CdSDataV = (3.3/65535) * CdSData
        CdSDataV = round(CdSDataV,1)
        return CdSDataV
   
def sdcardwrite():
    led2.value(0)
    file = open("/sd/sample1.txt","a")
    file.write("Temperature : {:.0f}C   Humidity : {:.0f}%   VRVolt : {:.2f}V   CdSVolt : {:.2f}V \r\n".format(temp, humi, adcInput(0),adcInput(1)))
    file.close()
    led2.value(1)
    
while True:         
    tempHumiSensor()
    print('Temperature = {:.1f}C    Humidity = {:.1f}%'.format(temp,humi))
    print('CdS Volt    = {:.1f}V     VR Volt  = {:.1f}V'.format(adcInput(1),adcInput(0)))
        
        
    vrInput = adcInput(0)
    cdsInput = adcInput(1)       
    
    uart0.write("temp : ")
    uart0.write(str(temp))
    uart0.write('C')
    uart0.write("   Humi : ")
    uart0.write(str(humi))
    uart0.write('%')
    uart0.write("   CdSV : ")
    uart0.write(str(cdsInput))
    uart0.write('V')
    uart0.write("   VR_V : ")
    uart0.write(str(vrInput))
    uart0.write('V')
    uart0.write('\n')
    
    sdcardwrite()
    
    sleep(0.5)

sdcard.py

from micropython import const
import time


_CMD_TIMEOUT = const(100)

_R1_IDLE_STATE = const(1 << 0)
# R1_ERASE_RESET = const(1 << 1)
_R1_ILLEGAL_COMMAND = const(1 << 2)
# R1_COM_CRC_ERROR = const(1 << 3)
# R1_ERASE_SEQUENCE_ERROR = const(1 << 4)
# R1_ADDRESS_ERROR = const(1 << 5)
# R1_PARAMETER_ERROR = const(1 << 6)
_TOKEN_CMD25 = const(0xFC)
_TOKEN_STOP_TRAN = const(0xFD)
_TOKEN_DATA = const(0xFE)


class SDCard:
    def __init__(self, spi, cs, baudrate=1320000):
        self.spi = spi
        self.cs = cs

        self.cmdbuf = bytearray(6)
        self.dummybuf = bytearray(512)
        self.tokenbuf = bytearray(1)
        for i in range(512):
            self.dummybuf[i] = 0xFF
        self.dummybuf_memoryview = memoryview(self.dummybuf)

        # initialise the card
        self.init_card(baudrate)

    def init_spi(self, baudrate):
        try:
            master = self.spi.MASTER
        except AttributeError:
            # on ESP8266
            self.spi.init(baudrate=baudrate, phase=0, polarity=0)
        else:
            # on pyboard
            self.spi.init(master, baudrate=baudrate, phase=0, polarity=0)

    def init_card(self, baudrate):

        # init CS pin
        self.cs.init(self.cs.OUT, value=1)

        # init SPI bus; use low data rate for initialisation
        self.init_spi(100000)

        # clock card at least 100 cycles with cs high
        for i in range(16):
            self.spi.write(b"\xff")

        # CMD0: init card; should return _R1_IDLE_STATE (allow 5 attempts)
        for _ in range(5):
            if self.cmd(0, 0, 0x95) == _R1_IDLE_STATE:
                break
        else:
            raise OSError("no SD card")

        # CMD8: determine card version
        r = self.cmd(8, 0x01AA, 0x87, 4)
        if r == _R1_IDLE_STATE:
            self.init_card_v2()
        elif r == (_R1_IDLE_STATE | _R1_ILLEGAL_COMMAND):
            self.init_card_v1()
        else:
            raise OSError("couldn't determine SD card version")

        # get the number of sectors
        # CMD9: response R2 (R1 byte + 16-byte block read)
        if self.cmd(9, 0, 0, 0, False) != 0:
            raise OSError("no response from SD card")
        csd = bytearray(16)
        self.readinto(csd)
        if csd[0] & 0xC0 == 0x40:  # CSD version 2.0
            self.sectors = ((csd[8] << 8 | csd[9]) + 1) * 1024
        elif csd[0] & 0xC0 == 0x00:  # CSD version 1.0 (old, <=2GB)
            c_size = csd[6] & 0b11 | csd[7] << 2 | (csd[8] & 0b11000000) << 4
            c_size_mult = ((csd[9] & 0b11) << 1) | csd[10] >> 7
            self.sectors = (c_size + 1) * (2 ** (c_size_mult + 2))
        else:
            raise OSError("SD card CSD format not supported")
        # print('sectors', self.sectors)

        # CMD16: set block length to 512 bytes
        if self.cmd(16, 512, 0) != 0:
            raise OSError("can't set 512 block size")

        # set to high data rate now that it's initialised
        self.init_spi(baudrate)

    def init_card_v1(self):
        for i in range(_CMD_TIMEOUT):
            self.cmd(55, 0, 0)
            if self.cmd(41, 0, 0) == 0:
                self.cdv = 512
                # print("[SDCard] v1 card")
                return
        raise OSError("timeout waiting for v1 card")

    def init_card_v2(self):
        for i in range(_CMD_TIMEOUT):
            time.sleep_ms(50)
            self.cmd(58, 0, 0, 4)
            self.cmd(55, 0, 0)
            if self.cmd(41, 0x40000000, 0) == 0:
                self.cmd(58, 0, 0, 4)
                self.cdv = 1
                # print("[SDCard] v2 card")
                return
        raise OSError("timeout waiting for v2 card")

    def cmd(self, cmd, arg, crc, final=0, release=True, skip1=False):
        self.cs(0)

        # create and send the command
        buf = self.cmdbuf
        buf[0] = 0x40 | cmd
        buf[1] = arg >> 24
        buf[2] = arg >> 16
        buf[3] = arg >> 8
        buf[4] = arg
        buf[5] = crc
        self.spi.write(buf)

        if skip1:
            self.spi.readinto(self.tokenbuf, 0xFF)

        # wait for the response (response[7] == 0)
        for i in range(_CMD_TIMEOUT):
            self.spi.readinto(self.tokenbuf, 0xFF)
            response = self.tokenbuf[0]
            if not (response & 0x80):
                # this could be a big-endian integer that we are getting here
                for j in range(final):
                    self.spi.write(b"\xff")
                if release:
                    self.cs(1)
                    self.spi.write(b"\xff")
                return response

        # timeout
        self.cs(1)
        self.spi.write(b"\xff")
        return -1

    def readinto(self, buf):
        self.cs(0)

        # read until start byte (0xff)
        for i in range(_CMD_TIMEOUT):
            self.spi.readinto(self.tokenbuf, 0xFF)
            if self.tokenbuf[0] == _TOKEN_DATA:
                break
            time.sleep_ms(1)
        else:
            self.cs(1)
            raise OSError("timeout waiting for response")

        # read data
        mv = self.dummybuf_memoryview
        if len(buf) != len(mv):
            mv = mv[: len(buf)]
        self.spi.write_readinto(mv, buf)

        # read checksum
        self.spi.write(b"\xff")
        self.spi.write(b"\xff")

        self.cs(1)
        self.spi.write(b"\xff")

    def write(self, token, buf):
        self.cs(0)

        # send: start of block, data, checksum
        self.spi.read(1, token)
        self.spi.write(buf)
        self.spi.write(b"\xff")
        self.spi.write(b"\xff")

        # check the response
        if (self.spi.read(1, 0xFF)[0] & 0x1F) != 0x05:
            self.cs(1)
            self.spi.write(b"\xff")
            return

        # wait for write to finish
        while self.spi.read(1, 0xFF)[0] == 0:
            pass

        self.cs(1)
        self.spi.write(b"\xff")

    def write_token(self, token):
        self.cs(0)
        self.spi.read(1, token)
        self.spi.write(b"\xff")
        # wait for write to finish
        while self.spi.read(1, 0xFF)[0] == 0x00:
            pass

        self.cs(1)
        self.spi.write(b"\xff")

    def readblocks(self, block_num, buf):
        nblocks = len(buf) // 512
        assert nblocks and not len(buf) % 512, "Buffer length is invalid"
        if nblocks == 1:
            # CMD17: set read address for single block
            if self.cmd(17, block_num * self.cdv, 0, release=False) != 0:
                # release the card
                self.cs(1)
                raise OSError(5)  # EIO
            # receive the data and release card
            self.readinto(buf)
        else:
            # CMD18: set read address for multiple blocks
            if self.cmd(18, block_num * self.cdv, 0, release=False) != 0:
                # release the card
                self.cs(1)
                raise OSError(5)  # EIO
            offset = 0
            mv = memoryview(buf)
            while nblocks:
                # receive the data and release card
                self.readinto(mv[offset : offset + 512])
                offset += 512
                nblocks -= 1
            if self.cmd(12, 0, 0xFF, skip1=True):
                raise OSError(5)  # EIO

    def writeblocks(self, block_num, buf):
        nblocks, err = divmod(len(buf), 512)
        assert nblocks and not err, "Buffer length is invalid"
        if nblocks == 1:
            # CMD24: set write address for single block
            if self.cmd(24, block_num * self.cdv, 0) != 0:
                raise OSError(5)  # EIO

            # send the data
            self.write(_TOKEN_DATA, buf)
        else:
            # CMD25: set write address for first block
            if self.cmd(25, block_num * self.cdv, 0) != 0:
                raise OSError(5)  # EIO
            # send the data
            offset = 0
            mv = memoryview(buf)
            while nblocks:
                self.write(_TOKEN_CMD25, mv[offset : offset + 512])
                offset += 512
                nblocks -= 1
            self.write_token(_TOKEN_STOP_TRAN)

    def ioctl(self, op, arg):
        if op == 4:  # get number of blocks
            return self.sectors
반응형

동작결과

마이크로파이썬 shell 창에서의 출력 데이터

 

블루투스를 통한 테블릿 데이터 출력 화면

 

SDCARD에 저장된 데이터 확인

 

728x90
반응형
LIST

댓글